Air Quality Analysis in India: Unveiling Pollution Hotspots and Health Impacts (Python Data Analysis)

Project Title: Air Quality Analysis in India: Unveiling Pollution Hotspots and Health Impacts (Python Data Analysis)

(Optimized for Keywords: Air Quality Analysis, India, Pollution, Data Analysis, Python, Health Impacts)

1. Data Sources: India's Air Pollution Data Hubs


Example creative image 1


  • Central Pollution Control Board (CPCB) - India (Official Source): https://cpcb.nic.in/ - Your primary resource for India's air quality data. Explore the National Air Quality Monitoring Programme (NAMP) for pollutant concentrations like PM2.5, PM10, SO2, NOx, and Ozone. Look for downloadable datasets; availability may vary.
  • Open Government Data (OGD) Platform India (Data Repository): https://data.gov.in/ - Search for "air quality," "pollution," and "CPCB" to find relevant datasets. Consider this a supplementary data source.
  • State Pollution Control Boards (SPCBs) (Regional Data): Check individual SPCBs for state-specific air pollution data.

Data Collection – Challenges & Solutions for India's Data:

  • Accessibility: Air quality data in India can be scattered. Be prepared to combine data from multiple sources.
  • Data Quality: Expect missing values and inconsistencies. Data cleaning is critical.

2. Project Goals: India Air Quality Insights


Example creative image 2


  • Analyze air quality trends across Indian cities.
  • Identify major air pollutants in India.
  • Explore seasonal air pollution patterns affecting Indian cities.
  • Investigate links between air pollution and health indicators (requires external health data).
  • Visualize India's air quality data effectively.
  • Potentially identify sources of air pollution based on data analysis.

3. Python Libraries: Tools for Air Quality Analysis


Example creative image 3


  • Pandas: For data manipulation and cleaning air quality data.
  • NumPy: For numerical operations essential to air pollution analysis.
  • Matplotlib: For creating basic data visualizations of air quality.
  • Seaborn: Enhanced data visualization to highlight air pollution trends.
  • datetime: Handling dates and times for time series analysis of air quality.
  • SciPy: For statistical analysis to understand air pollution correlations.

4. Code Implementation (Python): Air Quality Analysis Workflow


Example creative image 4



Implementation.py



import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from scipy.stats import pearsonr

# 1. Data Loading and Cleaning - Essential for reliable results
def load_and_clean_data(air_quality_file):
    """Loads and cleans Indian air quality data."""
    air_quality_data = pd.read_csv(air_quality_file)

    # Data Cleaning (Examples)
    air_quality_data['date'] = pd.to_datetime(air_quality_data['date'])
    air_quality_data.dropna(inplace=True)  # Handle missing values
    air_quality_data = air_quality_data[air_quality_data['pm25'] > 0]  # Remove invalid PM2.5
    # Handle outliers appropriately (IQR, z-score)

    return air_quality_data

# 2. Exploratory Data Analysis (EDA) - Discovering patterns
def perform_eda(data):
    """Performs EDA and generates visualizations for Indian air quality data."""

    # Average PM2.5 levels by City - Identifying Hotspots
    city_pm25 = data.groupby('city')['pm25'].mean().sort_values(ascending=False)
    plt.figure(figsize=(10, 6))
    sns.barplot(x=city_pm25.index, y=city_pm25.values)
    plt.title('Average PM2.5 Levels by City in India')
    plt.xlabel('City')
    plt.ylabel('Average PM2.5 (µg/m³)')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()

    # Time Series Plot of PM2.5 for Delhi - Analyzing Trends
    delhi_data = data[data['city'] == 'Delhi'].sort_values('date')
    plt.figure(figsize=(12, 6))
    plt.plot(delhi_data['date'], delhi_data['pm25'])
    plt.title('PM2.5 Levels in Delhi over Time')
    plt.xlabel('Date')
    plt.ylabel('PM2.5 (µg/m³)')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()

    # Seasonal Trends - Understanding the impact of weather
    data['month'] = data['date'].dt.month
    monthly_pm25 = data.groupby('month')['pm25'].mean()
    plt.figure(figsize=(10, 6))
    sns.lineplot(x=monthly_pm25.index, y=monthly_pm25.values)
    plt.title('Seasonal Trends in PM2.5 Levels in India')
    plt.xlabel('Month')
    plt.ylabel('Average PM2.5 (µg/m³)')
    plt.show()

    # Correlation Analysis - Identifying pollutant relationships
    correlation, p_value = pearsonr(data['pm25'], data['so2'])  # PM2.5 vs. SO2
    print(f"Correlation between PM2.5 and SO2: {correlation:.2f} (p-value: {p_value:.3f})")

# 3. Main Execution
if __name__ == "__main__":
    # Replace with your actual file path
    air_quality_file = 'indian_air_quality.csv'  # Your India air quality dataset

    air_quality_data = load_and_clean_data(air_quality_file)
    perform_eda(air_quality_data)

-
5. Sample Data File (indian_air_quality.csv) - India Air Quality Example


Example creative image 5



date,city,pm25,pm10,so2,nox
2023-01-01,Delhi,250,400,30,80
2023-01-01,Mumbai,80,150,15,40
2023-01-01,Kolkata,180,300,25,60
2023-01-02,Delhi,270,420,32,85
2023-01-02,Mumbai,85,160,16,42
2023-01-02,Kolkata,190,310,27,65

-

6. Expected Insights: India-Specific Findings


Example creative image 5


  • Cities with the highest PM2.5 and other pollutant concentrations.
  • Air pollution trends over time in Indian cities.
  • Seasonal variations in air pollution (e.g., winter smog).
  • Correlations between different air pollutants in India.

7. Further Enhancements: Deep Dive into India's Air Quality


Example creative image 6


  • Health Impact Assessment: (If possible) Link air pollution to health outcomes in India.
  • Geospatial Analysis: Map air pollution levels using location data for monitoring stations.
  • Statistical Modeling: Predict air pollution based on weather, traffic, etc.
  • Source Apportionment: Identify the main sources of air pollution.
  • Policy Evaluation: Assess the impact of air pollution control policies in India.

Key Considerations for Analyzing India's Air Quality Data:

  • Data Sources: Use reliable sources like CPCB, OGD, and SPCBs.
  • Data Cleaning: Handle missing data and inconsistencies carefully.
  • Units: Ensure consistent units for all pollutants.
  • Indian Air Quality Standards: Compare pollution levels to NAAQS.
  • Context: Consider factors like weather, geography, and local sources.

Comments