on
ai 주식투자
- Get link
 - X
 - Other Apps
 
Project Title: Air Quality Analysis in India: Unveiling Pollution Hotspots and Health Impacts (Python Data Analysis)
(Optimized for Keywords: Air Quality Analysis, India, Pollution, Data Analysis, Python, Health Impacts)
1. Data Sources: India's Air Pollution Data Hubs
Data Collection – Challenges & Solutions for India's Data:
2. Project Goals: India Air Quality Insights
3. Python Libraries: Tools for Air Quality Analysis
4. Code Implementation (Python): Air Quality Analysis Workflow
Implementation.py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from scipy.stats import pearsonr
# 1. Data Loading and Cleaning - Essential for reliable results
def load_and_clean_data(air_quality_file):
    """Loads and cleans Indian air quality data."""
    air_quality_data = pd.read_csv(air_quality_file)
    # Data Cleaning (Examples)
    air_quality_data['date'] = pd.to_datetime(air_quality_data['date'])
    air_quality_data.dropna(inplace=True)  # Handle missing values
    air_quality_data = air_quality_data[air_quality_data['pm25'] > 0]  # Remove invalid PM2.5
    # Handle outliers appropriately (IQR, z-score)
    return air_quality_data
# 2. Exploratory Data Analysis (EDA) - Discovering patterns
def perform_eda(data):
    """Performs EDA and generates visualizations for Indian air quality data."""
    # Average PM2.5 levels by City - Identifying Hotspots
    city_pm25 = data.groupby('city')['pm25'].mean().sort_values(ascending=False)
    plt.figure(figsize=(10, 6))
    sns.barplot(x=city_pm25.index, y=city_pm25.values)
    plt.title('Average PM2.5 Levels by City in India')
    plt.xlabel('City')
    plt.ylabel('Average PM2.5 (µg/m³)')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
    # Time Series Plot of PM2.5 for Delhi - Analyzing Trends
    delhi_data = data[data['city'] == 'Delhi'].sort_values('date')
    plt.figure(figsize=(12, 6))
    plt.plot(delhi_data['date'], delhi_data['pm25'])
    plt.title('PM2.5 Levels in Delhi over Time')
    plt.xlabel('Date')
    plt.ylabel('PM2.5 (µg/m³)')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
    # Seasonal Trends - Understanding the impact of weather
    data['month'] = data['date'].dt.month
    monthly_pm25 = data.groupby('month')['pm25'].mean()
    plt.figure(figsize=(10, 6))
    sns.lineplot(x=monthly_pm25.index, y=monthly_pm25.values)
    plt.title('Seasonal Trends in PM2.5 Levels in India')
    plt.xlabel('Month')
    plt.ylabel('Average PM2.5 (µg/m³)')
    plt.show()
    # Correlation Analysis - Identifying pollutant relationships
    correlation, p_value = pearsonr(data['pm25'], data['so2'])  # PM2.5 vs. SO2
    print(f"Correlation between PM2.5 and SO2: {correlation:.2f} (p-value: {p_value:.3f})")
# 3. Main Execution
if __name__ == "__main__":
    # Replace with your actual file path
    air_quality_file = 'indian_air_quality.csv'  # Your India air quality dataset
    air_quality_data = load_and_clean_data(air_quality_file)
    perform_eda(air_quality_data)
-
date,city,pm25,pm10,so2,nox
2023-01-01,Delhi,250,400,30,80
2023-01-01,Mumbai,80,150,15,40
2023-01-01,Kolkata,180,300,25,60
2023-01-02,Delhi,270,420,32,85
2023-01-02,Mumbai,85,160,16,42
2023-01-02,Kolkata,190,310,27,65
-
6. Expected Insights: India-Specific Findings
7. Further Enhancements: Deep Dive into India's Air Quality
Key Considerations for Analyzing India's Air Quality Data:
Comments
Post a Comment